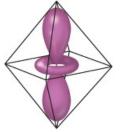


DEPARTMENT OF CHEMISTRY
Midterm Examination
Chemistry 1110 (Modern Chemistry I)


30 October, 2013

Question 1 1.5-point multiple choice, **select 1 answer only**. Do *all* questions (1.5 points each, 6 total)

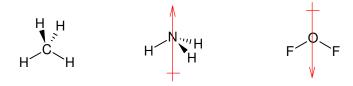
(i) What is the missing particle in this balanced nuclear reaction?

$${}^{8}_{4}\text{Be} + \underline{\qquad} \rightarrow {}^{12}_{6}\text{C}$$

- (e) α-particle
- (ii) David Price won the Cy Young Award in 2012. His fastball pitch averages 95 mph. Assuming a baseball weighs 0.145 kg and the speed converts to 42.5 m/s, what is the wavelength of Price's fastball?
 - (c) 1.08×10^{-34} m
- (iii) The half-life of ²³²Pu is 34.1 minutes. Calculate how long it would take 99% of a sample of ²³²Pu to decay.
 - (a) 227 min
- (iv) One of these sets of quantum numbers is valid. Choose the valid set.
 - (a) $n = 3, l = 2, m_l = 2$
- Question 2 1-point multiple choice, **select 1 answer only**. Do *all* questions (1 point each, 3 total; there is no penalty for a wrong guess):
 - (i) Based on the geometry (trigonal planar), what is the hybridization of the C in formaldehyde, $H_2C=O$?
 - (c) sp^2
 - (ii) Based on the geometry (trigonal bipyramidal), what is the hybridization of the P in formaldehyde, PCl₅?
 - (e) sp^3d
 - (iii) What is this orbital?
 - (c) $3d_{z^2}$

Question 3 (a) Draw the Lewis structure for **1 of the following 2**. Note that the central atom will not obey the octet rule. (2 points)

$$POCl_3$$
 XeO_3


(b) Draw the Lewis structure of **either** CO₃²⁻ **or** NO₂⁻. Include all lone pairs, resonance structures, and formal charges. (3 points)

$$\overset{\tiny \bigcirc}{:} \overset{\tiny \square}{:} \overset{\tiny \square}{\circ} \overset{\tiny \square}{:} \overset{\tiny \square}{\circ} \overset{\tiny \square}{\longleftrightarrow} \overset{\tiny \square}{\circ} \overset{\tiny \square}{\circ} \overset{\tiny \square}{\circ}$$

(c) Pick any 2 of the 4 molecules in (a) or (b) and say what its VSEPR shape is? Choose from: linear, bent, trigonal pyramidal, trigonal bipyramidal, square-based pyramidal, trigonal planar, square planar, see-saw, T-shaped, tetrahedral, or octahedral. (2 points)

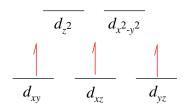
POCl₃ = tetrahedral XeO_3 = trigonal pyramidal CO_3^{2-} = trogonal planar NO_2^{-} = bent

(d) Show the **overall** dipole moment (or state that it is 0) for **2 of the following 3** molecules. (2 points)

Question 4 (3 points) The synthesis of rutherfordium (Rf) occurs by the following (balanced) nuclear reaction. Calculate the energy required (in J/mol) to force this reaction to take place. The exact masses (in g/mol) are 249 Cf = 249.07485, 12 C = 12 (exactly), 257 Rf = 257.1032, and 1 n = 1.00866.

$$^{249}Cf + ^{12}C \rightarrow ^{257}Rf + 4^{1}n$$

 Δm = products - reactants = 257.1032 + 4*1.00866 - 12 - 249.07485 = 0.06299 g/mol = 6.299×10⁻⁵ kg/mol


 $E = mc^2 = (6.299 \times 10^{-5} \text{ kg/mol})(3.00 \times 10^8 \text{ m/s})^2 = 5.67 \times 10^{12} \text{ J/mol}$

Question 5 Arrange the following elements based on their periodic trends (2 points)

Atomic radius (smallest to largest): Sr, Te, Ru Te < Ru < Sr

Ionization energy (smallest to largest): Al, Ca, Rb Rb < Ca < Al

Question 6 Determine the number of d-electrons, then arrange them in the d-porbitals, for the octahedral complex ion $[V(H_2O)_6]^{2+}$. (2 points)

Appendix 1: Formula Sheet

$PV = nRT$ $P_{\text{total}} = P_1 + P_2 + \dots$	$ \ln \frac{N_t}{N_0} = -kt $
$\left(P + \frac{n^2 a}{V^2}\right) \cdot (V - nb) = nRT$	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$
$\frac{1}{u} = \sqrt{\frac{3RT}{M_m}}$ rate $\overline{u} = \sqrt{\frac{M_m}{M_m}}$	$E = mc^{2}$ $c = \lambda v (= \lambda f)$ $E = hv (= hf)$
$\frac{\text{rate}_{A}}{\text{rate}_{B}} = \frac{\overline{u}_{A}}{\overline{u}_{B}} = \frac{\sqrt{M_{mB}}}{\sqrt{M_{mA}}}$	$\overline{E}_{k} = \frac{1}{2}m\overline{u}^{2}$
	$\Delta E = -2.178 \times 10^{-18} \text{J} \left(\frac{1}{n_{\text{final}}^2} - \frac{1}{n_{\text{initial}}^2} \right)$ $\lambda = \frac{h}{n_{\text{initial}}}$
	$A = \frac{1}{mv}$ $A = \epsilon bc$
	$(\Delta x)(\Delta(mv)) \ge {}^h/_{4\pi}$

Constants:

 $h = 6.626 \times 10^{-34} \text{ J s}$ 1 atm = 101.325 kPa = 760.00 Torr $c = 2.9979 \times 10^8 \text{ m/s}$ mass of an electron: 0.000549 amu (g/mol) mass of a proton: 1.00728 amu mass of a neutron: 1.008665 amu elementary charge (e) = 1.60218 x 10^{-19} C STP = 1 atm, 0°C

kilo = 10^3 centi = 10^{-2} milli = 10^{-3} micro = 10^{-6} nano = 10^{-9} pico = 10^{-12}

	S
	Φ
	₽
•	=
٠	<
1	Ħ
	negai
	\mathcal{L}_{i}
	Ψ
	Ē
	Q
	⇆
	O
	Ø
ì	=
L	Ц
	_
;	1
•	₹
	5
•	_
	nents (
•	Ľ
	Ċ
	Φ
	Z
	Ψ
L	H
	_
	t the
	2
•	-
١	
	O
	able.
	~
-	Q
	a
ŀ	_
•	
	O
	=
	×
	2
	\subseteq
	Periodic
ĺ	J
ĺ	e <i>Periodic</i>
	Φ
	7
F	

18	Helium 2 2 He 4.00	Neon 10 Ne 20.18	Ar 18 Ar 39.95	Krypton 36 Kr 83.80 3.0	Xeron 54 Xe 131.29 2.6	Radon 86 RN (222) 2.4	Ununoctium 118 Uuo (294)
	11	Pluorine 9 P P P P P P P P P P P P P P P P P P	Chlorine 17 CI S5.45 3.0	Bromine 35 Br 79.90 2.8	53 126.90 2.5	Astatine 85 At (210) 2.2	Unurseptium 117 Uus (294?)
	91	Oxygen 8 0 16.00 3.5				Polonium 84 Po (209) 2.0	Ununhexium 116 Uuh (293)
(22)	15	Nitrogen 7 N 14.01 3.0	Phosphorus 15 P 30.97 2.1	Assenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	B3 83 Bi 208.98 1.9	Ununpentium 115 Uup (288)
445		Carbon 6 C C 12.01	100		™ 50 Sn 118.71 1.8	Pb 207.20 1.8	Ununquadium 114 Uuq (289)
	5	5 B 10.81	Aluminum 13 Al 26.98 1.5	Gallium 31 Ga 69.72 1.6		Thallium 81 7 7 204.38 1.8	Ununtrium 113 Uut (284)
2	#	Avg. Mass	12	Zne 30 Zn 65.39 1.6		Mercury 80 Hg 200.59 1.9	Copernicium 112 Ch (285)
17144	Atomic #	Ī	•			Au 196.97 2.4	
2	ercury 80 ←	200.59 ← → 1.9	10	Nickel 28 28 Ni 58.69	Palladium 46 Pd 106.42 2.2	Platinum 78 Pt 195.08 2.2	Ds (281)
	→ Mercury 80 ◆	200	ை	Cobat 27 C0 58.93 1.8	Rhodium 45 Rh 102.91 2.2	Indium 77 Ir	Meitherium 109 Mt (276)
	nt name ————————————————————————————————————	gativity .	œ	Fe 55.85		Osmium 76 OS 190.23 2.2	Hassium 108 HS (270)
5	Element name- Symbol-	Electronegativity	7			Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (272)
_	□	Ш	ဖ		Molybdenum 42 Mo 95.94 1.8		70.
	metals	:mi-metal)	ĸ	V 23 V 50.94 1.6		Tantalum 73	Dubnium 105 Db (268)
	Alkali metals Alkaline earth metals Transition metals Lanthanides Actinides	Other metals Metalloids (semi-metal) Nonmetals Halogens Noble gases	4	Titanium 22 Ti Ti 47.88 1.5		Hafnium 72 Hf 178.49 1.3	Rutherfordium 104 Rf (267)
	All Tr	ŏ ž ž Ē ž	က	Scandium 21 SC SC 44.96 1.3	39 × 7 × 88.91	Lutetium 71 Lu 174.97 1.1	Lawrendum 103 Lr (262)
						\$7-70	89-102 **
	2	Be 9.01			Strontium 38 Sr 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 88 (226) (226) 0.9
-	Hydrogen 1.01	Lithium 3 Li 6.94 1.0	Sodium 11 Na 22.99 0.9	Potassium 19 K 39.10 0.8	Rubidium 37 Rb 85.47 0.8	Cesium 55 CS 132.91	Francium 87 Fr (223) 0.7

5		Praseodymium 59	Neodymium	Promethium 6.1	Samarium 6.2	Europium 63	Gadolinium 64	Terbium	Dysprosium 66	Holmium 67	Erbium 68	mnijny W	Ytterbium 70
lanthanides La (ဗီ	4	PN	Pm	Sm	i iii	8	q	2	유	ŭ	T.	Υp
138.91		140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04
		1.1	1.1	1.1	1.2	1.1	1.2	1.1	1.2	1.2	1.2	1.3	1.1
Actinium Th	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Ourium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium
68	06	91	92	93	94	92	96	97	86	66	100	101	102
**actinides Ac	£	Pa	>	ď	P	Am	E S	쑮	ប	ШS	Fm	Md	₈
	32.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(529)
	1.3	1.5	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3