Instructions:

- 1. **Put your name on this exam paper!!!** Questions are to be answered directly on these papers.
- 2. Allowed external materials: calculator (any type)
- 3. Print or write legibly!
- 4. The final 2 sheets of this exam paper are a periodic table and a formula sheet. Feel free to remove them if desired.
- 5. There are xxx points on the exam. Time allowed = 55 minutes.
- 6. Multiple choice to be answered on the 1^{st} page (like Midterm 1)

NOTE: Almost all of these could be asked as multiple choice. Obviously, on the real exam, you will have more room to fill in the full solution! These examples will take longer than the actual midterm.

- 1. A particular X-ray microscope can measure the position of a particle to within 5.0×10^{-11} m. What is the minimum error in the momentum (*mv*)?
 - (a) $1.1 \times 10^{-24} \text{ kg m s}^{-1}$
 - (b) $4.2 \times 10^{-23} \text{ kg m s}^{-1}$
 - (c) 1.1×10^{-44} kg m s⁻¹
 - (d) 2π
 - (e) $h/2\pi$
- 2. Draw Lewis structures for the following (including resonance and formal charges if necessary). Note that in both cases, the central atom does not obey the octet rule.
 - (a) $POCl_3$ (b) SO_3^{2-}
- 3. Predict the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory shape of the molecules in #2. For 2(b), predict the direction of the dipole moment (if any).
- 4. What is this orbital?

5. Explain the term "bidentate" (referring to a ligand).

- 6. Give a valid set of quantum numbers for an *electron* (4 quantum numbers!) in the following orbitals: 3*d*, 5*f*, 2*s*.
- 7. Predict the colour of the hydrogen emission line for the transition between the n = 4 and n = 2 energy levels.
- 8. Balance the following nuclear equations by supplying the missing particle (in these cases, only 1 particle is missing). Note the following shorthand conventions:

 $_{1}^{0}$ e (positron), $_{-1}^{0}$ e (β -particle), $_{0}^{1}$ n (neutron), $_{2}^{4}$ He (α -particle).

Note that the solution isn't necessarily one of these 4 particles!

(a) 222 Rn $\rightarrow ^{218}$ Po + _____

- (b) ${}^{238}\text{U} + {}^{12}\text{C} \rightarrow ___ + 6 {}^{1}\text{n}$
- 9. Calculate the energy released in the nuclear reactions given in Question 8. Nuclear exact masses are as follows: ²²²Rn (222.0175777), ²¹⁸Po (218.0089730), ⁴He (4.002603254), ²³⁸U (238.0507882), ¹²C (12 (exact)), ²⁴⁴Cf (244.066001), ¹n (1.00866).

10. What is the oxidation state of vanadium in $H_2V_2O_5$?

- (a) -2
 (b) 0
 (c) 2
 (d) 4
 (e) 5
- 11. $\operatorname{CoCl_6}^{4-}$ is a high spin octahedral complex. Show the *d*-orbital splitting in an octahedral complex, and say how many unpaired electrons the complex has.
- 12. Explain why atomic radius decreases as you go left to right across the periodic table.
- 13. Arrange the following in order of *increasing* electronegativity: N, Zr, F, Cu

SOLUTIONS

(note, the way the question is worded, either + or – answer is correct)

8. (a) ${}_{2}^{4}$ He (or 4 He is sufficient) (b) 244 Cf

9. (a) $E = (0.004002603254 + 0.2180089730 - 0.2220175777)(3.00 \times 10^8)^2 = -5.40 \times 10^{11}$

(b) $E = (0.24406600 + 6*0.00100866 - 0.2380507882 - 0.012000000)(3.00 \times 10^8)^2$ = 6.05×10^{12}

11. Co is 2+, therefore 7 electrons remaining in the *d*-orbitals; this will give it 3 unpaired electrons, as drawn.

12. Electrons in each shell will shield the electrons of higher energy, but they do not effectively shield electrons of the same energy. Therefore, as you go right to left, you have the same number of core electrons but increasing charge on the nucleus (called increasing effective nuclear charge). The electrons in the valence shell therefore see increasing nuclear charge (and don't see each other), so they are drawn closer to the nucleus, therefore size decreases.

13. Zr < Cu < N < F

Appendix 1: Formula Sheet

PV = nRT	
$P_{\text{total}} = P_1 + P_2 + \dots$	$\ln\frac{N_t}{N_0} = -kt$
$\left(P+\frac{n^2a}{V^2}\right)\cdot\left(V-nb\right)=nRT$	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$
	$E = mc^2$
$\overline{u} = \sqrt{\frac{3RT}{M_m}}$	$c = \lambda v \ (= \lambda f)$
$rate_{A}$ \overline{u}_{A} $\sqrt{M_{mB}}$	$E = h \mathbf{v} \ (= hf)$
$rate_{\rm B} = \overline{u}_{\rm B} = \sqrt{M_{m\rm A}}$	$\overline{E}_{\rm k} = \frac{1}{2}m\overline{\mu}^2$
	$\Delta E = -2.178 \times 10^{-18} \mathrm{J} \left(\frac{1}{n_{\rm final}^2} - \frac{1}{n_{\rm initial}^2} \right)$
	$\lambda = \frac{h}{mv}$
	$A = \epsilon bc$
	$(\Delta x)(\Delta(mv)) \ge {}^{h}/_{4\pi}$

Constants:

 $h = 6.626 \ge 10^{-34} \ \text{J} \le 10^{-34} \ \text{J} \le 1 = 101.325 \ \text{kPa} = 760.00 \ \text{Torr}$ $c = 2.9979 \ge 10^8 \ \text{m/s}$ 1 atm = 101.325 \ \text{kPa} = 760.00 \ \text{Torr}joules = kg m² s²²mass of an electron: 0.000549 amu (g/mol) $0\text{EC} = 273.15 \ \text{K}$ mass of a proton: 1.00728 amu $0\text{EC} = 273.15 \ \text{K}$ mass of a neutron: 1.008665 amu $N_A = 6.022 \ge 10^{23} \ \text{mol}^{-1}$ elementary charge (e) = 1.60218 \times 10^{-19} \ \text{C} $R = 8.314 \ \text{J} \ \text{mol}^{-1} \ \text{K}^{-1}$ $= 8.314 \ \text{L} \ \text{Pa} \ \text{mol}^{-1} \ \text{K}^{-1}$ $\text{STP} = 1 \ \text{atm}, 0^{\circ}\text{C}$ C

kilo = 10^3 centi = 10^{-2} milli = 10^{-3} micro = 10^{-6} nano = 10^{-9} pico = 10^{-12}

	18	Helium	4.00	10 10 20.18	Argon 18 39.95	Куртан 36 83.80 3.0	Xenon 54 54 131.29 2.6	Radon 86 (222) 2.4	Ununoctum 118 (294)	
			17	Fluorine 9 19.00 4.0	Chlorine 17 35.45 3.0	Bromine 35 B r 79.90 2.8	lodine 53 126.90 2.5	Astatine 85 At (210) 2.2	Ununseptium 117 UUS (294?)	
			16	охудел 8 16.00 3.5	sulfur 16 32.07 2.5	Selenium 34 36 78.96 2.4	Tellurium 52 127.60 2.1	Polonium 84 (209) 2.0	Ununhexium 116 Uuh (293) 	Ytterbium 70 70 173.04 1.1
ies)			15	Nitrogen 7 14.01 3.0	Phosphorus 15 30.97 2.1	Arsenic 33 AS 74.92 2.0	Antimony 51 50 121.76 1.9	Bismuth 83 83 83 83 83 80 1.9	Ununpentium 115 UUD (288)	Thulium 69 168.93 1.3
lements (with Electronegativit			14	Carbon 6 12.01 2.5	Silicon 14 28.09 1.8	Gemanium 32 32 66 72.61 1.8	50 50 118.71 1.8 1.8	Pb 207.20 1.8	Ununquadium 114 Uuq (289)	Etbium 68 167.26 1.2
			13	Boron 5 10.81 2.0	Auminum 13 AI 26.98 1.5	Gallum 31 69.72 1.6	Indium 49 114.82 1.7	Thallium 81 71 204.38 1.8	Ununtrium 113 Uut (284)	Holmium 67 164.93 1.2
		#		Mass	12	Zne Zn 65.39 1.6	Cadmium 48 48 112.41 1.7	Mercury 80 1.9 200.59 1.9	Copemicium 112 CN (285)	Dy 66 Dy 162.50 1.2
		Atomic		— Avg.	Ę	Copper 23 63.55 1.9	Silver 47 47 47 107.87 1.9	Gold 79 79 AU 196.97 2.4	Roentgenium 111 Rg (280)	Terbium 65 158.93 1.1
			↓	<pre> 59 4 1.9 </pre>	5	Nickel 28 28 58.69 1.8	Palladium 46 Pd 106.42 2.2	Platinum 78 Pt 195.08 2.2	Darmstadtium 110 DS (281)	Gadolinium 64 157.25 1.2
		→ Mer	· _	500	ത	27 27 58.93 1.8	Rhodium 45 102.91 2.2	Indium 77 192.22 2.2	Meitherium 109 Mt (276)	Europium 63 151.97 1.1
the E	8	ame	lodn	jativity -	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Iren 26 55.85 1.8	Ruthenium 44 84 101.07 2.2	Osmium 76 OS 190.23 2.2	Hassium 108 HS (270)	Samarium 62 82 150.36 1.2
le of		ement n	Syn	ectroneg	7	Manganese 25 01 54.94 1.5	Technetium 43 (98) 1.9	Rhenium 75 75 75 76 1.9	Bohrium 107 Bh (272)	Promethium 61 145) 1.1
: Tab		Ť		Ē	g	Chromium 24 24 52.00 52.00 1.6	Molybdenum 42 MO 95.94 1.8	Tungsten 74 V 183.84 1.7	Seaborgium 106 8g (271)	Neodymium 60 144.24 1.1
e Periodic		Alkali metals Alkaline earth metals Alkaline earth metals Institution metals		ni-metal)	Q	Vanadium 23 23 50.94 1.6	Nobium 41 92.91 1.6	Tantalum 73 73 180.95 1.5	Dubnium 105 Db (268)	Praseodymium 59 Pr 140.91
			nsition meta nthanides inides	Other metals Metalloids (sen Nonmetals Halogens Noble gases	4	Titanium 22 11 47.88 1.5	Zrconium 40 21.22 1.4	Hafnium 72 Hf 178.49 1.3	Rutherfordium 104 Rf (267)	Cerium 58 66 140.12 1.1
Η			Act		n	Scandium 21 22 44.96 1.3	7thrum 39 88.91 1.2	Lutetium 71 LU 174.97 1.1	Lawrencium 103 Lr (262)	Lanthanum 57 La 138.91 1.1
								57-70 *	89-102 **	anides
			3	Berylium 4 9.01 1.5	Magnesium 12 12 12 24.31 1.2	Calcium 20 20 40.08 1.0	Strontium 38 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 (226) 0.9	*lanth
	-	Hydrogen	1.01	Liftium 3 6.94 1.0	^{sodium} 11 22.99 0.9	Potassium 19 K 39.10 0.8	Rubidum 37 85.47 0.8	Cesium 55 CS 132.91 0.7	Francium 87 Fr (223) 0.7	

Nobelium 102 NO (259) 1.3

> 101 Md (258) 1.3

Femium 100 (257) 1.3

Einsteinium 99 ES (252) 1.3

Californium 98 Cf (251) 1.3

Berkelium 97 **BK** (247) 1.3

Ourium 96 CM (247) 1.3

Americium 95 AM (243) 1.3

Putonium 94 94 1.3 1.3

Neptunium 93 Np (237) 1.4

Uranium 92 0 238.03 1.4

Protactinium 91 231.04 1.5

Thorium 90 71 232.04 1.3

Actinium 89 AC (227) 1.1

**actinides